The Euler-Lagrange Equation for Interpolating Sequence of Landmark Datasets
نویسندگان
چکیده
Non-rigid registration of landmarked datasets is an important problem that finds many applications in medical image analysis. In this paper, we present a method for interpolating a sequence of landmarks. The sequence of landmarks may be a model of growth, where anatomical object boundaries are parametrized by landmarks and the growth processes generate a landmarked sequence in time. In a variational optimization framework, the matching diffeomorphism for this problem is generated from a gradient algorithm based on the EulerLagrange equation of a cost framed in the inexact matching setting.
منابع مشابه
An analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملG2 surface modeling using minimal mean-curvature-variation flow
Physical and geometric based variational techniques for surface construction have been shown to be advanced methods for designing high quality surfaces in the fields of CAD and CAGD. In this paper, we derive an Euler-Lagrange equation from a geometric invariant curvature integral functional–the integral about the mean curvature gradient. Using this Euler-Lagrange equation, we construct a sixtho...
متن کاملMinimal Mean-Curvature-Variation Surfaces and Their Applications in Surface Modeling
Physical based and geometric based variational techniques for surface construction have been shown to be advanced methods for designing high quality surfaces in the fields of CAD and CAGD. In this paper, we derive a Euler-Lagrange equation from a geometric invariant curvature integral functional–the integral about the mean curvature gradient. Using this Euler-Lagrange equation, we construct a s...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملThe analysis of a Beam Made of Physical Nonlinear Material on Elastic Foundation Under a Harmonic Load
ABSTRACT: A prismatic beam made of a behaviorally nonlinear material situated on nonlinear elastic foundation is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of motion is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003